General solution of string inspired nonlinear equations
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولGeneral Solution of Nonlinear Difference Equations
for ||y || ^ ôo as x tends to infinity in the region Im(x) ^ R0. The coefficients fk(y) are assumed to be holomorphic for ||y|| ;£ 50. Let X, be the eigenvalues of the matrix foy(0). We shall make the following assumptions: (i) /o(0) = 0, (ii)l< |xx|< |x2|< ... < |x„|, (iü)n?=ii^ip,^i^i for j = 1,2, • • -, re and ^UiPi ^ 2, where p, are nonnegative integers. If /o(0) = 0 and X¡ ?¿ 1, we can det...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کاملSolution of Nonlinear Equations
Suppose that f is a continuous function on the interval [a, b] and f(a)f(b) < 0. By intermediate value theorem, f has at least one zero in the interval [a, b]. We next calculate c = (a + b)/2 and test fc). If f(c) = 0, then c is the root and we are done. If not, then either f(a)f(c) < 0 or f(b)f(c) < 0. In the former case, a root lies in [a, c] and we rename c as b and do the same process. In t...
متن کاملANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 1999
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.533025